当前位置:首页 > 教学资料 > 教学设计

《数学广角》教学设计

时间:2024-06-09 00:04:47
《数学广角》教学设计

《数学广角》教学设计

作为一位兢兢业业的人民教师,编写教学设计是必不可少的,借助教学设计可以促进我们快速成长,使教学工作更加科学化。那么你有了解过教学设计吗?下面是小编为大家整理的《数学广角》教学设计,希望能够帮助到大家。

《数学广角》教学设计1

教学内容:

三年级数学上册第九单元《数学广角》教学目标:

1.知识目标:使学生借助直观图,利用集合的思想方法解决简单的重叠问题,并能用数学语言表述。

2.能力目标:使学生感知集合图的产生过程,初步培养学生的建模意识和能力,渗透多种方法解决问题的意识。

3.情感目标:培养学生初步养成善于观察、善于思考的学习习惯。教学重难点:

使学生借助直观图,利用集合的思想方法解决简单的重叠问题,并能用数学语言进行描述。教具学具准备:

课件教学流程:

一、创设情境生成问题

1、我想试试同学们反映快不快,请大家猜个脑筋急转弯。两个妈妈和两个女儿去看电影,每人买一张票,却只买了三张票就顺利进入了电影院,为什么?【姥姥、妈妈、女儿】

2、两个妈妈【板书:2】,两个女儿【板书:2】,却只买了3张票【板书:3】。这2+2怎么会等于3?这里谁的身份最特殊?为什么?【妈妈的身份最特殊,有两个身份,既是姥姥的女儿又是女儿的妈妈。】【妈妈有两个身份,重复算了一次,板书:2+2-1=3】

3、今天,我们要研究的就是与这有关的一类问题。【板书:数学广角】窍门满街跑,看你找不找。这节课看谁找的窍门最多?谁表现1得最好?

二、探索交流解决问题

为迎接我校20xx年校园科技艺术节的召开,学校将相继举行科技小制作和科技绘画比赛。要求每班5名同学参加科技小制作、6名同学参加科技绘画比赛。

这是三(1)班参加科技小制作和绘画比赛的学生名单。

你能从统计表中获得怎样的数学信息?你能提出怎样的数学问题?参加这两项比赛的共有多少人呢?谁来说一说?生:小制作的有5人,绘画的有6人,一共有11人。师:大家还有不同意见的吗?

请大家拿出纸和笔,在纸上写一写、画一画,看怎样方便我们数人数?然后小组交流。

用实物投影汇报或典型做法的同学去黑板板演。(连线、画图法)师:你更喜欢哪种方法?为什么?

生:集合图能使别人一看就知道参加小制作比赛的有哪些同学,参加绘画比赛的有哪些同学,两项比赛都参加的有哪些同学。在数学上,我们把参加小制作比赛的学生看作一个整体,叫做一个集合。(板书:集合)把参加绘画比赛的学生看作一个整体,也是一个集合。在100多年前的英国,有一个名叫韦恩的逻辑学家,就用一个集合图很方便的解决了我们今天遇到的这个问题。(课件出示)因为是韦恩最早发明的,所以就以他的名字命名这种图,叫韦恩图。老师发现不少同学的想法和韦恩的一样,看来如果我们生的比他早,那就是用你的名字来命名了。我们一起来分析一下。

左边的圈表示的是什么?(参加小制作比赛的有5人。)右边的圈表示的是什么?(参加绘画比赛的有6人。)中间两个圈相交的部2分呢?【既参加小制作比赛,又参加绘画比赛的有2人。】去掉相交部分的左边的圈表示什么?(只参加小制作比赛的有3人。)去掉相交部分的右边的圈表示什么?(只参加绘画比赛的有4人。)

9、现在我们知道了可以用韦恩图,既能表示重复的部分,又能方便统计总数。三(1)班参加小制作的和参加绘画的到底一共有多少人?该怎样列式计算呢?(也可以只强化第一种方法)①算法1:5+6-2=9(人)

你是怎么想的?【先把参加制作比赛的和参加绘画比赛的加起来。算式是5+6=11,然后再用11减去2个重复的,11-2=9】②算法2:3+4+2=9(人)

请你解释一下。【3是只参加小制作比赛的,4是只参加绘画比赛的,2是两项比赛都参加的,即重复的】

③算法3:5+4=9(人)【参加小制作比赛的5人,加上只参加绘画比赛的4人】

④算法4:6+3=9(人)【参加绘画比赛的6人,加上只参加小制作比赛的3人】

刚才同学们想了很多算法,你觉得哪种比较容易理解。把你比较容易理解的那种算法,说给你的同桌听一下,是什么意思?

三、巩固应用内化提高

1、同学们累了吧,我们轻松一下,老师带领大家去动物世界看看吧,它们是谁呀?在这些动物当中有会飞的,会游泳的。找找哪些是会飞的,哪些是会游泳的,你能把它们的序号填到图中合适的位置上吗?

只会飞的有哪些?【②④⑧⑩】只会游泳的有哪些?【①⑤⑥⑨】

③天鹅、大雁放哪儿?【放中间】为什么放中间?【它既会飞又3会游泳】同意吗?

如果又来了一只小狗,应该把它放在哪呢? 【因为它既不会飞也不会游泳】

所以不能放在圈里,只能把它放在哪里?【圈外】同学们真了不起,没有被这样的问题迷惑住!

2、每班5名同学参加科技小制作、6名同学参加科技绘画比赛,其他班级可能会有多少人参加呢?

3、三年级有20个同学参加兴趣小组,其中参加数学小组的有15人,参加语文小组的有13人。

(1)既参加数学小组又参加语文小组的有几人?

(2)只参加数学小组的有几人?

(3)只参加语文小组的有几人?

四、回顾整理反思提升

通过这节课的学习,你有什么收获?

《数学广角》教学设计2

教材分析:

“简单推理”是二年级下册“数学广角”中的内容,教材通过学生日常生活中最简单的事例,培养学生的逻辑推理能力,将数学思想方法渗透到解决实际问题中,本节课不仅是一节有趣实用的活动课,还是一节思维的训练课。例1的教学,让学生学会根据已知的条件进行简单的判断得出结论,通过生动有趣、形式多样的猜测、推理等游戏,经历简单的推理过程,初步获得一些简单推理的经验。

教学目标:

1、通过日常生活中的最简单的事例 让学生进行分析、推理得出结论,感受简单的推理过程,初步获得一些简单推理的经验。

2、培养学生初步观察、分析与推理的能力以及有顺序地、全面思考问题的能力。

3、体会数学思想方法在生活中的用途,激发学生学好数学的信心。

教学重、难点:

培养学生分析、推理的思维过程及有顺序地、全面思考问题的能力

教学过程:

一、情境引入

1、做游戏,猜一猜。

师:小朋友们今天这节课我们来做个游戏好吗?老师的手心有一枚1元的硬币,你们猜猜在哪只手心?

学生猜测。

教师提示:不在左手。

学生再猜。

师:说说你是怎样猜的?

……此处隐藏28473个字……法,思考:至少称几次就一定能找到这个次品呢?

[设计意图:学生在实际的操作中,可能会出现提前找到次品的情况,如果运气好的话称1次就可能找到次品。在这里必须引导学生在理解至少称几次就一定能找到这个次品 的含义,在此基础上让学生明白:当我们选用一种方法来分析的研究问题时,应注意把可能出现的结果考虑全面,才能得出正确的结论。同时也为下面的填表、探究优化策略作好准备。]

探索最优策略

在9个零件中有一个次品(次品重一些),用天平称,至少称几次就一定能找到这个次品呢?

小组分工合作:用学具摆一摆并尝试画图表示摆的过程,完成下表。

(合作要求:2名同学摆学具,2名同学用图示法作记录,2名同学分析填表。)

零件个数

分成的份数

每份的个数

至少称几次就一定能找到这个次品

[设计意图:这一环节是本节课的重点也是难点,必须进行小组活动,发挥集体的智慧才能突破这个难点。为了保证小组活动的有效性,活动前先在小组内进行分工,使每个成员都明确自己的任务。让学生摆学具而不再使用天平,并尝试用图示法记录操作过程,是完成由具体到抽象过渡中的重要一步。]

指名汇报,根据学生的回答填表并板书:

平衡 3(1,1,1)

9(3,3,3)

不平衡3(1,1,1) 2次

平衡1

9(4,4,1) 平衡2(1,1) 3次

不平衡4(1,1,2)

不平衡1

平衡1

平衡(2,2,1)

9(2,2,2,2,1) 不平衡2(1,1)3次

不平衡2(1,1)

9(1,1,1,1,1,1,1,1,1) 4次

引导观察:用哪一种方法保证能找出次品需要称的次数最少?

小结:平均分成3份去称,保证能找出次品所需的次数最少。

[设计意图:小组汇报时将学生的操作过程用图示法板书,使学生进一步理解并初步掌握这种分析方法。待测物品数量为9个时,只有平均分成3份称才能保证2次就找到次品,其它任何一种分法都比2次要多,这样便于学生发现规律。]

解决课始提出的问题,只需7次,让学生从强烈的对比中感受数学的魅力。

不能平均分成3份的应该怎样分呢?

全班合作:用图示法从10个和11个零件中找出一个次品。

(合作要求:将全班所有的小组分成2部分,一部分小组分析从10个零件中找出一个次品,另一部分小组分析从11个零件中找出一个次品。小组内先共同讨论出几种不同的分法,再2人合作选一种(组内不重复)用图示法分析。)

指名汇报,投影展示学生的分析过程。

引导观察,感知规律:一是把待测物品分成三份;二是要分得尽量平均,能够均分的就平均分成3份,不能平均分的,也应该使多的一份与少的一份只相差1。

[设计意图:设计待测物品数量为10个和11个,带领学生经历由特殊到一般的数学分析模式,在此基础上使学生比较全面地感知找次品这类问题的基本解决手段和方法。在这一环节中,让学生完全脱离具体的实物操作,实现从具体形象思维到抽象逻辑思维的过渡,但考虑到学生独立用图示法分析仍有难度,因而采用两个合作的方式进行。把学生分成2部分分别分析10个和11个,并要求小组内选方法时组内不重复,这样能提高探究的效率,在较短的时间内把几种情况都分析到。]

你知道这是为什么吗?你能不能对这个规律作出解释?

[设计意图:4-6年级学段目标中指出:在解决问题的过程中,能进行有条理的思考,能对结论的合理性作出有说服力的说明,能表达解决问题的过程,并尝试解释所得的结果。学生通过合作探索、归纳总结出了找次品的最优策略,解释这个规律能使学生对得出结论从感性认识上升为理性认识。要想用比较少的次数找到次品,那么每称一次都应该将次品锁定在一个尽可能小的范围内,因为天平有2个托盘,每称一次不但能对放上去的2份进行推理判断,还能对没放上去的1份进行推理判断,所以每称一次保证能锁定范围的最小值是待测物品的三分之一左右。]

拓展提高

猜测:这种方法在待测物品的数量更大时是否也成立呢?

第135页做一做:

有( )瓶水,除1瓶是盐水略重一些外,其他几瓶水质量相同。至少称几次能保证找出这瓶盐水?

请你选择一个合适的数来解这道题,独立用图示法分析,验证你的猜测是否正确。

[设计意图:本节课中提供的归纳方法在本质上是一种不完全归纳法,对数量更大时的情形是否适用,还需要通过试验来检验。先让学生进行猜测,引发学生进一步进行归纳、推理等数学思考活动,再将做一做进行适当的改编,设计成较为开放的问题,既能满足不同层次学生的需求,又可以用更多的数据对总结的规律进行验证。如果课堂时间不允许,这一环节也可以作为课堂的延伸让学生课后完成。]

《找次品》教学反思

著名的心理学家布鲁纳说过这样一句话:学习的最好刺激是对学习材料的兴趣。学生有了兴趣,学习活动对他们来说不是一种负担,而是一种享受、一种愉悦的体验。因此,上课开始,我首先拿出学生们喜欢的口香糖调动学生的兴趣,并与学生交流:老师这里有3瓶口香糖,要送给今天表现得最出色的同学,不过其中有一瓶已经被我吃过了两片,送给你们肯定不行,你能用什么办法把它找出来吗?随着学生的回答揭示本节课的教学内容找次品:在生活中常常有这样一些情况,在一些看似完全相同的物品中混着一个重量不同的,轻一点或是重一点,利用天平能够快速准确的把它找出来,我们把这类问题叫做找次品。

从3瓶口香糖中找次品的方法是本节课的基础。在这一环节中,我让学生用手做天平的托盘,感知从3瓶口香糖中找次品,只要称一次就足够了。接着

让学生用五个圆片代替5瓶口香糖,通过自己动手操作,体验从五件物品中找出一件次品的基本方法。随后,师生小结出方案。第一种方案:每份分一个,至少需要称两次就一定能找出来。第二种方案:有2份分2个,1份分1个,至少需要称两次就能找出来。

然后通过从9个零件中找出一个轻一些的次品,归纳出找次品的最优方法。《数学课程标准》强调:教师是学习的组织者、引导者和合作者。教师的引导能让学生对学习的程序、方式、方法、策略等有更进一步的了解。所以,本环节我把主动权交给学生,让学生小组合作,在试验、研讨的过程中自主探索解决问题的最优方法。接下来,在学生汇报、交流时引导学生归纳出找次品的最优策略,一是把待测物品平均分成3份,这样次数最少。

接着呼应课前的猜想,从9到27到81到243到729到2187,只需7次就能保证找到次品,学生从强烈的反差中感受到数学的魅力。

为了知识体系的完整,我让学生继续自主分析8瓶的找法,当数字不能被平均分成3份时,怎样分更合理,从均分2份需3次,而分成3、3、2时只需2次,从而更加清楚均分3份的好处,及尽量均分3份的策略。但因时间仓促,过程太简单,效果受到影响。

《《数学广角》教学设计.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式